New self-charging device generates electricity from air moisture

“With this unique asymmetric structure, the electric performance of our MEG device is significantly improved in comparison with prior MEG technologies, thus making it possible to power many common electronic devices, such as health monitors and wearable electronics,” added Tan.

The new NUS invention is highly scalable since its raw materials are commercially available and easy to access. It also comes with a very low fabrication cost of about US$0.15 per meter square. All this means the MEG device is suitable for mass production.

“Our device shows excellent scalability at a low fabrication cost. Compared to other MEG structures and devices, our invention is simpler and easier for scaling-up integrations and connections. We believe it holds vast promise for commercialisation,” concluded Tan.

The results were published in the print version of scientific journal Advanced Materials.

Abstract:

The interactions between moisture and materials give rise to the possibility of moisture-driven energy generation (MEG). Current MEG materials and devices only establish this interaction during water sorption in specific configurations, and conversion is eventually ceased by saturated water uptake. This paper reports an asymmetric hygroscopic structure (AHS) that simultaneously achieves energy harvesting and storage from moisture absorption. The AHS is constructed by the asymmetric deposition of a hygroscopic ionic hydrogel over a layer of functionalized carbon. Water absorbed from the air creates wet-dry asymmetry across the AHS and hence an in-plane electric field. The asymmetry can be perpetually maintained even after saturated water absorption. The absorbed water triggers the spontaneous development of an electrical double layer (EDL) over the carbon surface, which is termed a hygro-ionic process, accounting for the capacitive properties of the AHS. A peak power density of 70 µW cm-3 was realized after geometry optimization. The AHS shows the ability to be recharged either by itself owing to a self-regeneration effect or via external electrical means, which allows it to serve as an energy storage device. In addition to insights into moisture-material interaction, AHSs further shows potential for electronics powering in assembled devices.

Leave a Comment

Your email address will not be published.